DropXL Sorghum

Developing Water
Optimized Sorghum for
Kansas using Drone
Imagery and Data Driven
Approaches.

Presenter:

Sarah Sexton-Bowser, CSIP Managing Director, KSU Md. Abdullah Al Bari, Postdoc Research Fellow, KSU

Atmospheric Water Deficit and Sorghum Planted Area

PRISM Normals 1991-2020 TerraClimate Normals 1981-2010 USDA NASS 2012-2021

TRAIT MAP

TRAIT MAP

TRAIT MARKER

TRAIT MAP

+5 bu/ac

 \sim ³/₄ in ch

Do we need water efficient crop?

- □ Daily weather data from the past 30 years, Kansas shows high VPD (>2.5 kPa)
- ☐ Western Kansas has 100-140 days with such stress
- Breeding water efficient crop can save water and increase productivity

On going: 2023

A holistic approach to genetically dissect traits and develop markers to track water use efficient traits

On going: 2024

Donor lines with desirable agronomic traits to traits to breeding program

Population development

DropXL mapping population

Population started 2018

Small population summer 2021

- □ Total of 160 lines
- \Box Lines at $F_4 \& F_6$ generation

Population advancement

- Seed multiplied at Mexico
- Bulk seed production

Fully developed population 2022

- ☐ A total of 320 lines
- \square Lines are at F_6 to F_8 generation

Where to evaluate the trial?

- Manhattan
- □ Colby
- ☐ Tribune

Trial setup 2022

Apopulation of 320 individuals were planted following a

RCBD design with 3 replicates, each plot is 4 row, 10 feet, 987

plots each location

The trial was set up at 3 locations (Manhattan, Colby, Tribune

How to approach plant phenotyping?

Operational cost and time

Infrared Thermometer

Leaf Porometer

Unmanned Aerial Vehicle

\$

UAV image capturing

DropXL mapping population at Manhattan, KS

Trevor Witt flying UAV

How do you get from drone imagery to data driven approaches?

UAV image processing pipeline

Dense Cloud

Plot level data extraction

Orthomosaic

Overlaying shapefile

Plot level temperature

Expected outcome

☐ Generated markers would guide breeding with better precision and rapid introgression of traits

□ DropXL sorghum
also providing water
efficient
germplasms, inbred
lines, and hybrids

TRAIT MARKER

Spring 2023

Architecture Candidate Markers TRAIT DONOR

Spring 2025

Germplasms Inbreds Hybrids

Acknowledgements

THE TEAM

Terry Felderhoff, Molecular Sorghum Breeding Sarah Sexton-Bowser, CSIP Managing Director Md. Abdullah Al Bari, Genetics and Phenomics Rob Aiken, Cropping Systems Trevor Witt, UAV Specialist

Thank you!!

