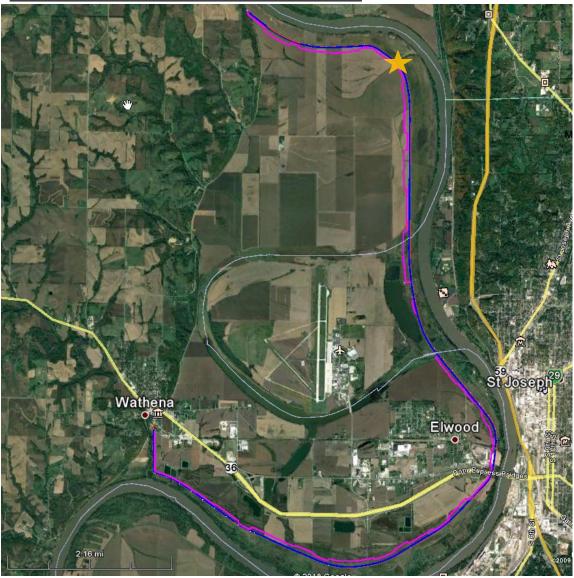

R471-460 LEVEE RAISE (ST. JOE) ELWOOD/WATHENA

UPDATE FOR RAC

Craig Weltig PE Civil Works PM 3 August 2021

"The views, opinions and findings contained in this report are those of the authors(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other official documentation."


<u>AGENDA</u>

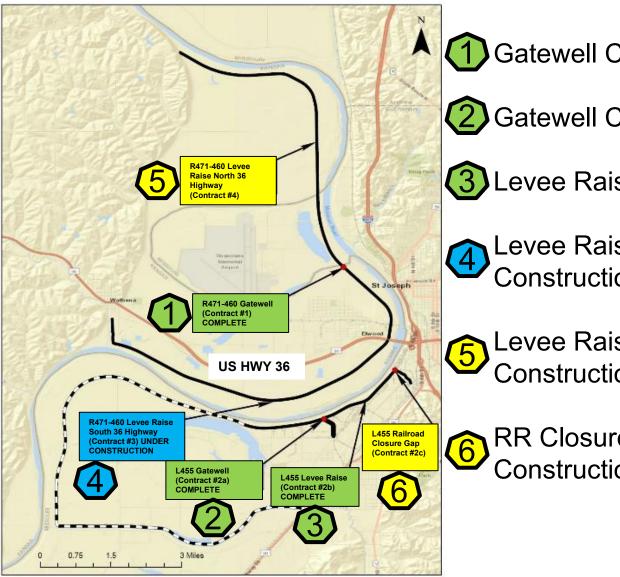
- Project Background
- Geotechnical Design Approach
- Failure Mechanisms
- 2019 Flood
- Borrow Areas
- Construction Video

BACKGROUND

PROJECT PURPOSE

- Correct Hydraulic Deficiency
- Provide project that can be FEMA recertified

<u>HISTORY</u>


- Originally built in 1968
- FEMA Decertified in 1999
- NWD deemed hydraulically inadequate
- 9 1999 Feasibility
- 2016 Prelim. Redesign
- 2016 Start Construction
- 2017 Full Federal portion of Funding obtained

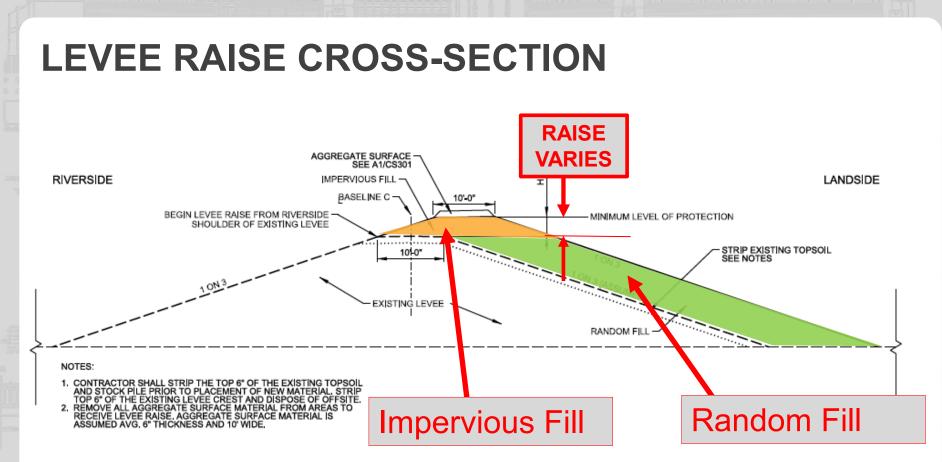
of Engineers

LOCATION MAP & CONSTRUCTION

Gatewell Complete 2017

Gatewell Complete 2018

3 Levee Raise Complete 2020


Levee Raise S-36 In Construction Complete ~2022

Levee Raise N-36 Construction Start 2022

RR Closure Gap Construction Start 2022

- <u>Side of levee</u> Landside
- <u>Material proposed</u> Impervious and Random borrow
- <u>Top of Levee Raise</u> 831.6' to 817.3' South: .5' to 3' (2.5' average) North: 0.5' to 2.5' (1' average)
- Levee Raise distance 12.3 miles (65,300 feet)

(North: 7+00 – 404+00, 405+00- 416+00, South: 416+00- 629+00, 696+00-728+00)

of Engineers.

THROUGH LEVEE SEEPAGE

- Impervious fill material selected for riverside to reduce rate of water entering levee
- Random fill material selected for landside to allow the use of larger variety of material.
- Random fill material in berm can be beneficial to the stability of the levee slope.

(diverts water that would exit on the slope to the toe)

IMPERVIOUS FILL

- Really should be called "much less" pervious fill
- Composed of Clay (low plasticity), or Silt or combination of the two
- Rate of water flow through the material is several orders of magnitude less "Pervious material", which is typically Sand
- Used to limit how much seepage enters levee

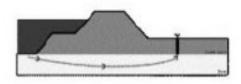
RANDOM FILL

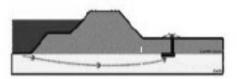
- Will allow water to flow through it more rapidly than Impervious
- It is anticipated that it will be sandy material but can also be clay and silt
- Its placement allows a lot more types of material to be placed and its tendency to move water more rapidly can actually be more beneficial

Design Measures to Prevent Underseepage type Failures

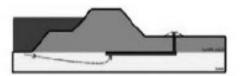
• Option 1. Place Soil (berm) at toe of levee to add weight to soil on landside

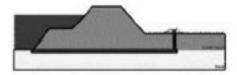
• Option 2. Install relief well near landside toe to reduce water pressure.


We have used each of these options where appropriate



Raising Levee – Impact on Seepage Failure Mechanisms


 Raising Levee underseepage pressures on landside of levee can lead to piping failure if not adequately addressed during design


Phase 1: seepage

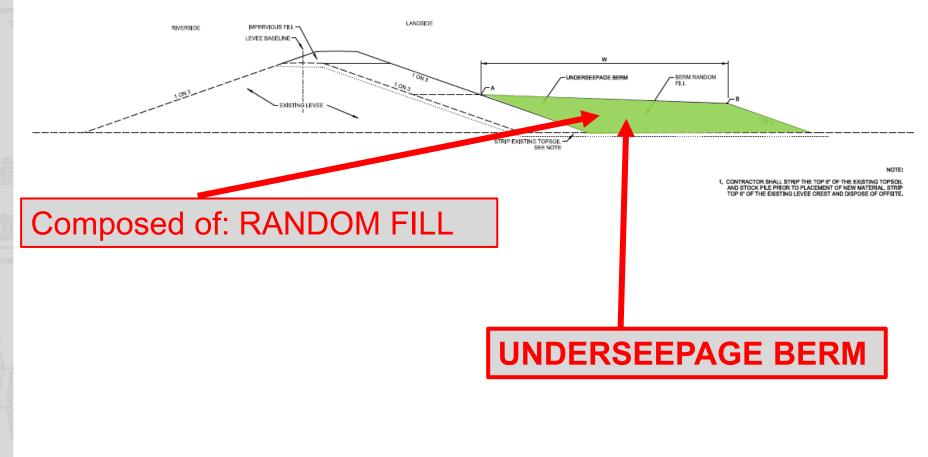
Phase 2: backward erosion initiation

Phase 3: backward erosion progression

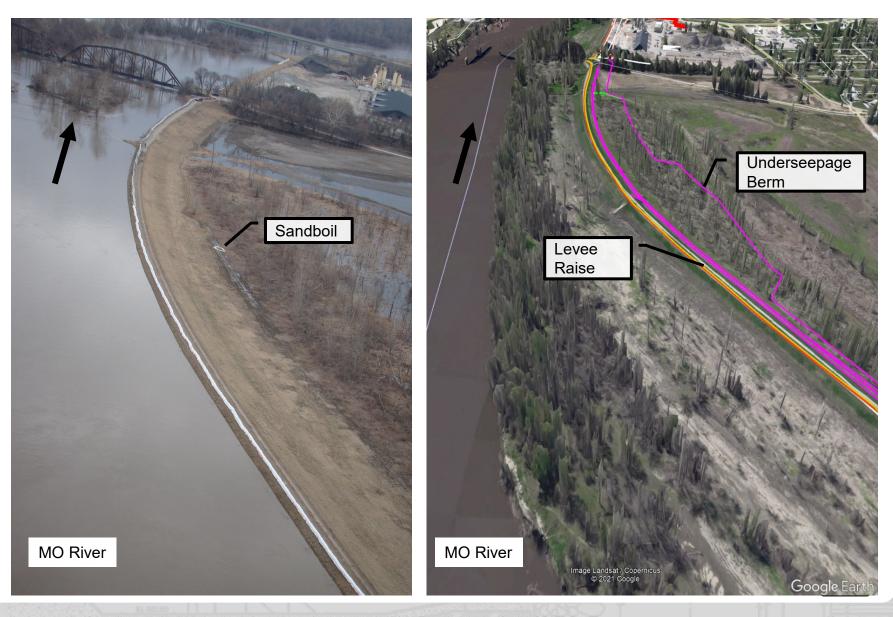
Phase 4: widening of pipe

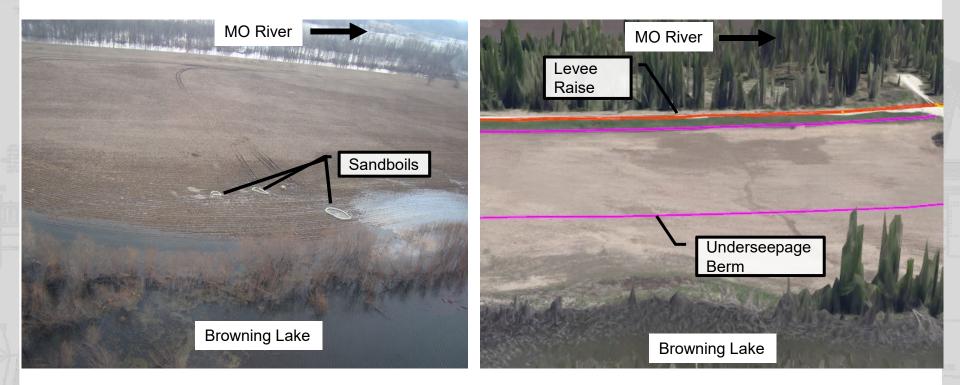
Phase 5: failure of the levee

Phase 6: breakthrough



Sandbag ring around a sandboil


SEEPAGE BERM SECTION



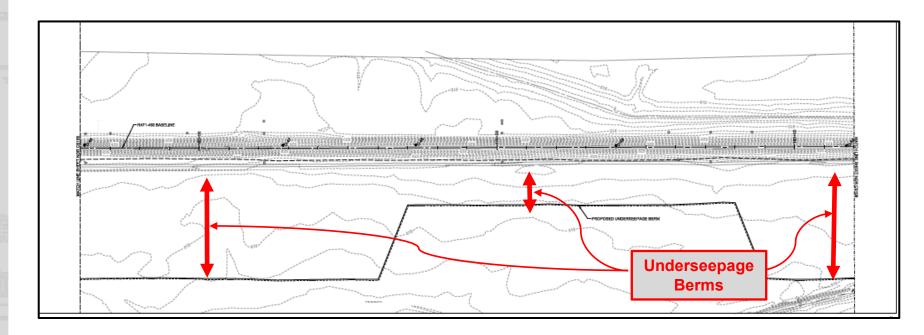
RESULTS FROM 2019 FLOOD

RESULTS FROM 2019 FLOOD

SEEPAGE BERM PARAMETERS

		Proposed		Landside						Berm		
Station	Berm Width (ft)	TOL Elev	Pre-Raise TOL (ft)	Ground El.	L ₂	L ₂ addition	Proposed	Min. Tie in Elev. (ft)	Xbermgrown	Crown	Berm Slope	Berm toe
	width (ft)	(ft)	TOL (π)	(ft)	-	-	L2	Elev. (tt)		Elev. (ft)	(1/S)	Slope (1/S)
0+00 to 18+00	140	831.64	831.64	818.0	70.0	0.0	70.0	821.0	175	819.0	70	6
18+00 to 37+00	340	831.38	831.25	817.0	80.0	0.4	80.4	821.0	380	818.0	113	6
37+00 to 44+00	140	831.12	830.75	818.0	80.0	1.1	81.1	821.0	181	819.0	70	6
44+00 to 52+00	290	831.03	830.9	816.5	80.0	0.4	80.4	820.0	330	817.5	116	6
52+00 to 66+00	290	830.93	830.86	816.0	70.0	0.2	70.2	819.0	325	817.0	145	6
66+00 to 70+00	390	830.75	830.56	816.0	90.0	0.6	90.6	819.5	436	817.0	156	6
70+00 to 79+00	265	830.39	830.39	817.0	85.0	0.0	85.0	820.0	308	818.0	133	6
79+00 to 85+00	290	830.58	830.39	815.0	75.0	0.6	75.6	818.5	328	816.0	116	6
85+00 to 99+45	240	830.52	830.23	816.0	100.0	0.9	100.9	819.0	291	817.0	120	6
99+46 to 114+50	215	830.30	829.55	815.0	100.0	2.3	102.3	819.0	267	816.0	72	6
114+51 to 131+00	140	830.02	828.61	816.0	90.0	4.2	94.2	819.0	189	817.0	70	6
131+00 to 152+00	340	829.69	828.31	815.0	85.0	4.1	89.1	819.5	387	816.0	97	6
152+00 to 166+00	390	829.36	827.16	815.0	85.0	6.6	91.6	820.0	439	816.0	98	6
166+00 to 179+00	140	829.18	826.67	815.0	90.0	7.5	97.5	818.0	193	816.0	70	6
179+00 to 205+00	390	828.95	826.65	815.0	85.0	6.9	91.9	820.0	439	816.0	98	6
205+00 to 228+00	175	828.50	825.89	815.0	80.0	7.8	87.8	818.5	223	816.0	70	6
228+00 to 236+00	125	828.05	825.56	810.0	110.0	7.5	117.5	813.0	187	811.0	63	6
236+00 to 256+00	390	827.89	825.54	807.0	90.0	7.1	97.1	813.0	442	808.0	78	6
256+00 to 270+00	365	827.72	824.89	810.0	60.0	8.5	68.5	815.0	403	811.0	91	6
270+00 to 284+00												
284+00 to 293+00	140	827.20	824.31	810.0	80.0	8.7	88.7	813.0	189	811.0	70	6
326+00 to 331+00	215	826.46	825.01	807.0	130.0	4.4	134.4	810.5	284	808.0	86	6
331+00 to 342+00	240	826.27	824	808.0	115.0	6.8	121.8	811.5	304	809.0	96	6
342+00 to 349+00	265	826.01	823.65	807.0	130.0	7.1	137.1	811.0	337	808.0	88	6
349+00 to 367+00	140	825.87	823.65	806.0	145.0	6.7	151.7	809.0	219	807.0	70	6
367+00 to 376+00	50	825.40	823.74	807.5	135.0	5.0	140.0	810.5	122	808.5	25	6
376+00 to 386+00	365	825.01	822.34	806.0	150.0	8.0	158.0	811.0	448	807.0	91	6
386+00 to 397+00	255	824.89	822.08	807.0	130.0	8.4	138.4	811.0	328	808.0	85	6
397+00 to 404+00	140	824.49	821.61	807.0	100.0	8.6	108.6	810.5	199	808.0	56	6
405+00 to 417+00	200	823.75	821.88	815.0	65.0	5.6	70.6	818.0	238	816.0	100	6
417+00 to 448+00	50	823.6	821.5	809.0	70.0	6.3	76.3	812.0	91	810.0	25	6
448+00 to 466+00	275	822.7	821.3	806.0	75.0	4.2	79.2	809.5	317	807.0	110	6
466+00 to 480+00	100	822.3	820.9	804.0	70.0	4.2	74.2	807.0	139	805.0	50	6
480+00 to 500+00	215	821.8	820.1	805.0	80.0	5.1	85.1	808.5	260	806.0	86	6
500+00 to 510+00	400	821.1	819.8	805.0	70.0	3.9	73.9	809.5	439	806.0	114	6
510+00 to 528+00	270	820.9	820.4	804.0	70.0	1.5	71.5	808.0	307	805.0	90	6
528+00 to 551+00	400	820.6	819.6	802.0	70.0	3.0	73.0	807.5	438	803.0	89	6
551+00 to 561+00	400	820.1	819.2	802.0	70.0	2.7	72.7	806.0	438	803.0	133	6
561+00 to 573+00	230	819.6	819.2	802.0	75.0	1.2	76.2	806.0	269	803.0	77	6
573+00 to 587+00	350	819.2	819.2	802.0	75.0	0.0	75.0	805.0	388	803.0	175	6
587+00 to 606+00	250	818.7	818.7	803.0	75.0	0.0	75.0	806.0	288	804.0	125	6
606+00 to 620+00	50	818.3	818.3	803.0	80.0	0.0	80.0	807.0	90	804.0	17	6
620+00 to 631+00	50	818.2	818.2	801.0	85.0	0.0	85.0	804.0	93	802.0	25	6
631+00 to 651+00	190	818.4	818.4	802.0	85.0	0.0	85.0	805.5	233	803.0	76	6
651+00 to 666+00	105	817.9	817.9	802.0	85.0	0.0	85.0	805.0	148	803.0	53	6
666+00 to 681+00	50	817.6	817.6	802.0	85.0	0.0	85.0	805.0	93	803.0	25	6
681+00 to 690+00	50	817.4	817.4	801.0	90.0	0.0	90.0	804.0	95	802.0	25	6
690+00 to 702+00	150	817.3	817.3	802.0	90.0	0.0	90.0	806.0	195	803.0	50	6
702+00 to 715+00	50	817.3	816.6	804.0	70.0	2.1	72.1	807.0	87	805.0	25	6
715+00 to 728+00	50	817.3	816.8	810.0	70.0	1.5	71.5	813.0	87	811.0	25	6

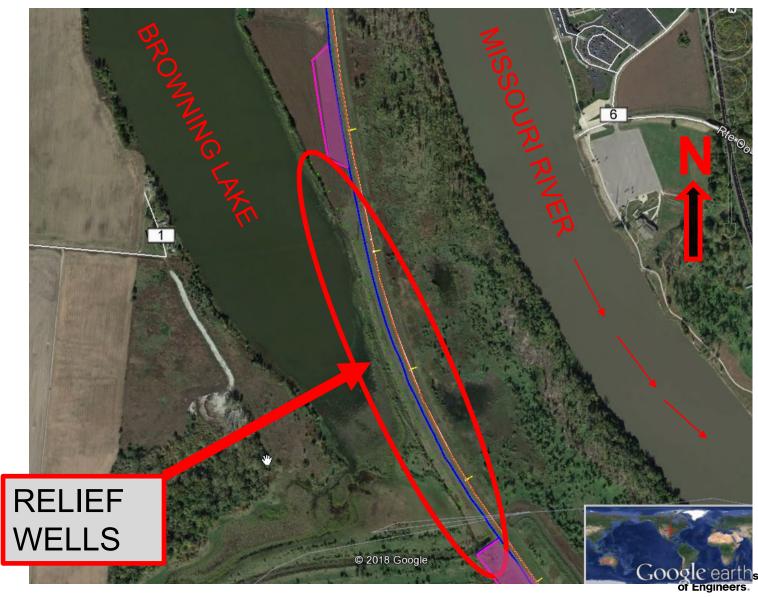
"Use 100 ft to transition between different herm widths


Summary

- 13.14 miles of berms (69,400 feet)
- 50' to 400' in width
- Avg. Width =220 feet
- 3' 5' thickness

TYPICAL SEEPAGE BERM

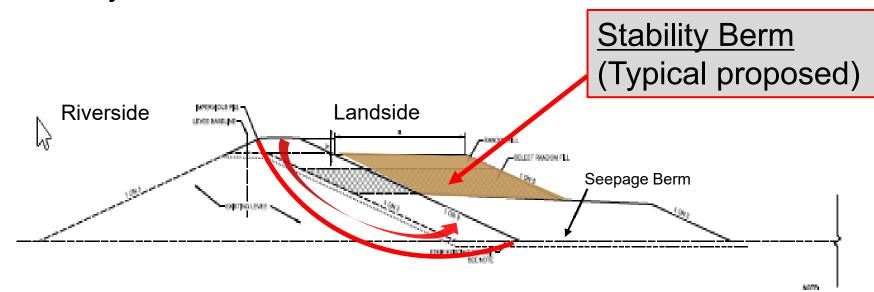
Plan View (example): Station 156+00 to 162+00


RELIEF WELLS TO CONTROL UNDERSEEPAGE

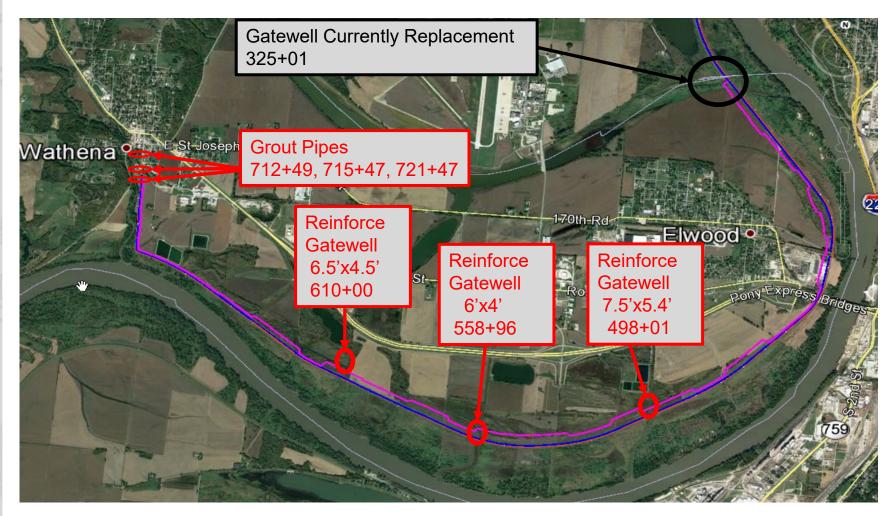
- Browning lake and Drainage at station 325+00 necessitated Relief Wells rather than seepage berm
- Needed Relief Wells from Station 292+00 to 325+00
- 27 relief wells
- Spacing 90 to 100-feet
- Will Extend to Bedrock ~90-feet
- Flows to discharge to Browning lake or adjacent ditch

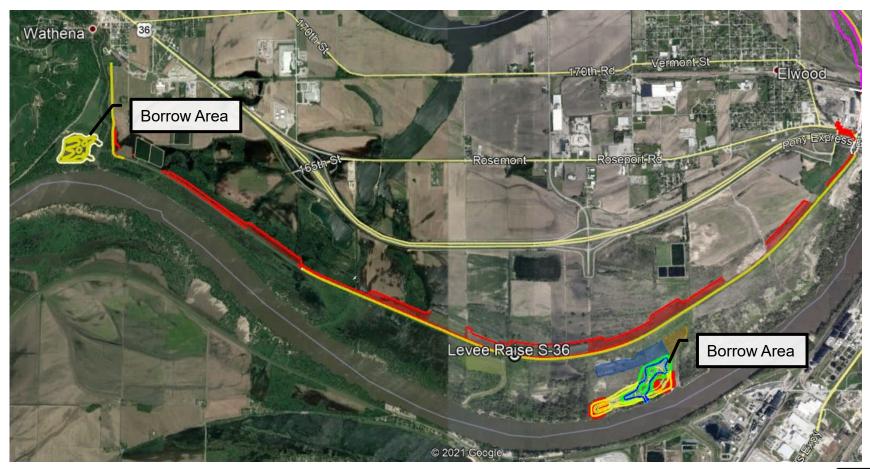
RELIEF WELL - PROPOSED LOCATIONS

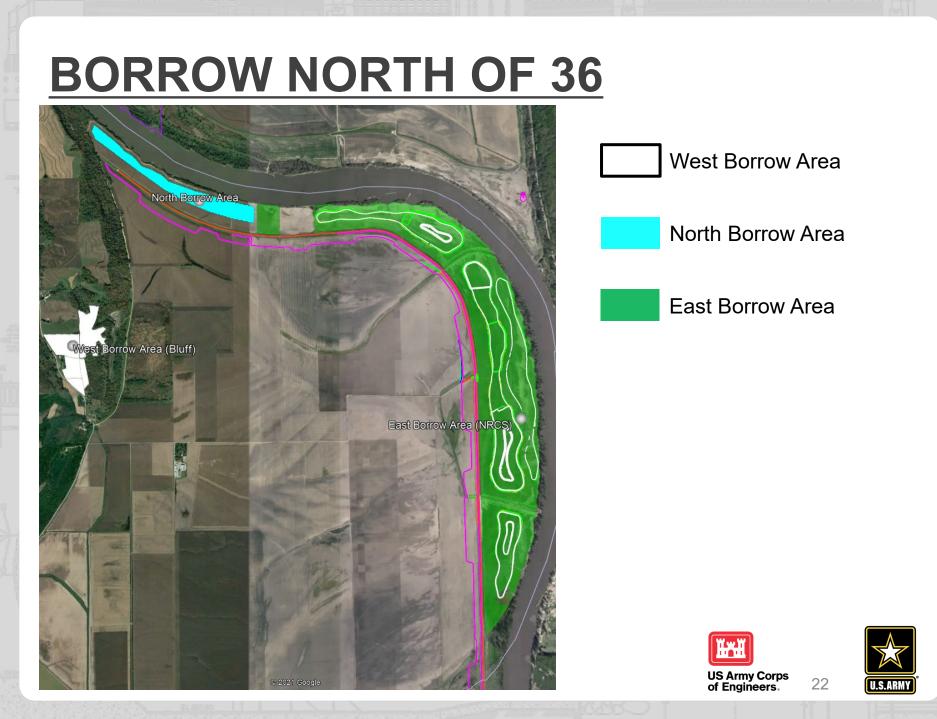
STABILITY – MODE OF FAILURE WE DESIGN TO PREVENT



STABILITY BERM


Stability Berms are design to add weight and prevent stability failure


OTHER PROJECT FEATURES


BORROW SOUTH OF 36

US Army Corps of Engineers.

CONSTRUCTION VIDEO FROM MCON

https://www.facebook.com/mconunderground/videos/1735419773329687/

