

Unraveling the mechanisms of microbial reductive dechlorination of chlorinated ethenes under saline conditions

Marc Almloff¹, Jaejin Lee², Kent C. Armstrong³, Fadime K. Murdoch⁴, Frank E. Löffler^{5,6,7,8,9}, and Jeongdae Im^{1*} ¹Department of Civil Engineering, Kansas State University, Manhattan, KS 66506;

²Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011;

²TerraStryke Products LLC, Andover, NH 03216; ³Battelle Memorial Institute, Columbus, OH 43201;

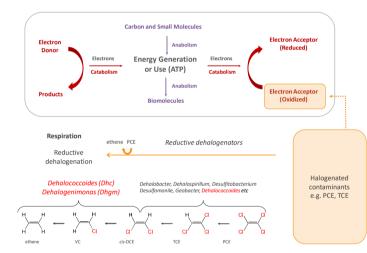
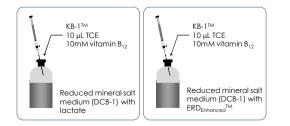
⁴Department of Civil and Environmental Engineering, ⁵Center for Environmental Biotechnology, ⁶Department of Microbiology, and ⁷Department of

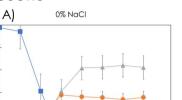
Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996:

⁸Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

Background

- Trichloroethylene (TCE) is a volatile organic compound that has been widely used in many industries as a solvent, specifically, for refrigerants and metal degreasers
- TCE is the most frequently detected volatile organic compound (VOC) in groundwater
- TCE can be biologically degraded via reductive dechlorination through cis-DCE, vinyl chloride, and ethene
- Only members of the genus Dehalococcoides (Dhc) and Dehalogenimonas (Dhgm) are known to completely dechlorinate PCE and TCE to environmentally benign ethene

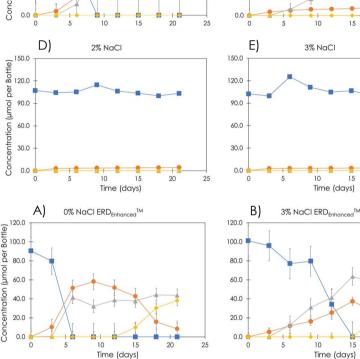



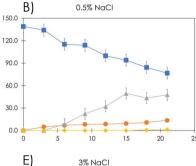

Figure 1. Conceptual model of reductive dehalogenation

- Experiments will be conducted using the Dhc consortium KB-1™
- First goal is to examine the effect of salinity on **TCE** degradation
- Second goal is to test the commercial biostimulate ERD_{Enhanced}TM to enhance the survival of Dhc in saline conditions

Materials and Methods

- All conditions were done in triplicates
- Salt concentrations were added after the media was prepared in the cases of 0.5%, 1%, 2% and 3% NaCl ERD_{Enhanced}TM using a 25% NaCl solution

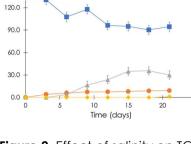

Results


120.0

90.0

60.0

30.0



Time (days)

Time (days)

0.5% NaCl

1% NaCl

C

Figure 2. Effect of salinity on TCE dechlorination by Dhc. A) 0% NaCl, B) 0.5% NaCl, C) 1% NaCl, D) 2% NaCl, E) 3% NaCl. blue square, TCE; orange circle, cis-DCE; gray triangle, vinyl chloride; yellow diamond, ethene.

Figure 3. Effect of ERD_{Enhanced}TM on TCE dechlorination by Dhc. A) 0% NaCI ERD_{Enhanced}TM, B) 3% NaCl ERD_{Enhanced}TM. Blue square, TCE; orange circle, cis-DCE; gray triangle, vinyl chloride; yellow diamond, ethene.

Conclusions

- Degradation of TCE did not occur in saline concentrations above 2% NaCl
- ERD_{Enhanced}TM sped up the dechlorination process at 0% salinity and was able to produce ethene in the 3% salinity condition
- Two hypotheses are put forth by the authors which allow the degradation of chlorinated ethenes in high salinity concentrations: osmoprotectants or biofilm formation

Future Research

- Understanding the role of biofilm and what potential it could have regarding Dhc
- ✤ Investigating autoinducer-2 (AI-2) as the signaling molecule for biofilm formation Examining the effects of different concentrations of osmoprotectants and/or
- ERD_{Enhanced}TM Examining the degradation of chlorinated ethenes from in situ aguifer samples

Acknowledgement

- This material is based upon work supported by the National Science Foundation under grant no. 1828571
- Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation

